Axel Bacher ; Mireille Bousquet-Mélou - Weakly directed self-avoiding walks

dmtcs:2883 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2883
Weakly directed self-avoiding walks

Authors: Axel Bacher 1; Mireille Bousquet-Mélou ORCID-iD2,3

We define a new family of self-avoiding walks (SAW) on the square lattice, called $\textit{weakly directed walks}$. These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine their generating function. This series has a complex singularity structure and in particular, is not D-finite. The growth constant is approximately 2.54 and is thus larger than that of all natural families of SAW enumerated so far (but smaller than that of general SAW, which is about 2.64). We also prove that the end-to-end distance of weakly directed walks grows linearly. Finally, we study a diagonal variant of this model.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: Enumeration,Self-avoiding walks,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Linked publications - datasets - softwares

Source : ScholeXplorer IsRelatedTo DOI 10.1016/0001-8708(79)90049-5
  • 10.1016/0001-8708(79)90049-5
A noncommutative version of the matrix inversion formula

1 Document citing this article

Consultation statistics

This page has been seen 145 times.
This article's PDF has been downloaded 201 times.