Axel Bacher ; Mireille Bousquet-Mélou - Weakly directed self-avoiding walks

dmtcs:2883 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2883
Weakly directed self-avoiding walksConference paper

Authors: Axel Bacher 1; Mireille Bousquet-Mélou ORCID2,3

[en]
We define a new family of self-avoiding walks (SAW) on the square lattice, called $\textit{weakly directed walks}$. These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine their generating function. This series has a complex singularity structure and in particular, is not D-finite. The growth constant is approximately 2.54 and is thus larger than that of all natural families of SAW enumerated so far (but smaller than that of general SAW, which is about 2.64). We also prove that the end-to-end distance of weakly directed walks grows linearly. Finally, we study a diagonal variant of this model.

[fr]
Nous définissons une nouvelle famille de chemins auto-évitants (CAE) sur le réseau carré, appelés $\textit{chemins faiblement dirigés}$. Ces chemins ont une caractérisation simple en termes des ponts irréductibles qui les composent. Nous déterminons leur série génératrice. Cette série a une structure de singularité complexe et n'est en particulier pas D-finie. La constante de croissance est environ 2,54, ce qui est supérieur à toutes les familles naturelles de SAW étudiées jusqu'à présent, mais inférieur aux CAE généraux (dont la constante est environ 2,64). Nous prouvons également que la distance moyenne entre les extrémités du chemin croît linéairement. Enfin, nous étudions une variante diagonale du modèle.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Enumeration, Self-avoiding walks

1 Document citing this article

Consultation statistics

This page has been seen 349 times.
This article's PDF has been downloaded 526 times.