Discrete Mathematics & Theoretical Computer Science |

- 1 Institut de Physique Théorique - UMR CNRS 3681
- 2 Department of Computer Science [Erlangen]

In recent work on nonequilibrium statistical physics, a certain Markovian exclusion model called an asymmetric annihilation process was studied by Ayyer and Mallick. In it they gave a precise conjecture for the eigenvalues (along with the multiplicities) of the transition matrix. They further conjectured that to each eigenvalue, there corresponds only one eigenvector. We prove the first of these conjectures by generalizing the original Markov matrix by introducing extra parameters, explicitly calculating its eigenvalues, and showing that the new matrix reduces to the original one by a suitable specialization. In addition, we outline a derivation of the partition function in the generalized model, which also reduces to the one obtained by Ayyer and Mallick in the original model.

Source: HAL:hal-01186313v1

Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)

Section: Proceedings

Published on: January 1, 2010

Imported on: January 31, 2017

Keywords: Reaction diffusion process,non-equilibrium lattice model,transfer matrix Ansatz,partition function,characteristic polynomial,Hadamard transform,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 174 times.

This article's PDF has been downloaded 326 times.