Margaret Archibald ; Arnold Knopfmacher ; Toufik Mansour - Compositions and samples of geometric random variables with constrained multiplicities

dmtcs:2885 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2885
Compositions and samples of geometric random variables with constrained multiplicitiesConference paper

Authors: Margaret Archibald ORCID1; Arnold Knopfmacher ORCID2; Toufik Mansour ORCID3

  • 1 Laboratory of Foundational Aspects of Computer Science
  • 2 The John Knopfmacher Centre for Applicable Analysis and Number Theory [Johannesburg]
  • 3 Department of Mathematics [Haïfa]

We investigate the probability that a random composition (ordered partition) of the positive integer n has no parts occurring exactly j times, where j belongs to a specified finite `forbidden set' A of multiplicities. This probability is also studied in the related case of samples Γ=(Γ1,Γ2,,Γn) of independent, identically distributed random variables with a geometric distribution.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: compositions,generating functions,geometric random variable,Mellin transform,Poisson transform,multiplicity,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]

Consultation statistics

This page has been seen 282 times.
This article's PDF has been downloaded 247 times.