Drew Armstrong - Hyperplane Arrangements and Diagonal Harmonics

dmtcs:2889 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2889
Hyperplane Arrangements and Diagonal HarmonicsArticle

Authors: Drew Armstrong 1

  • 1 Department of Mathematics [Miami]

In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We prove that our statistics are equivalent to the area' and bounce statistics of Haglund and Loehr. In this setting, we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two directions: to "extended'' Shi arrangements and to the bounded chambers of these arrangements. This leads to a (conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to elementary symmetric functions.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: Shi arrangement,Ish arrangement,affine permutations,diagonal harmonics,Catalan numbers,nabla operator,parking functions,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • Combinatorics of Root Systems; Funder: National Science Foundation; Code: 1001825

1 Document citing this article

Consultation statistics

This page has been seen 244 times.
This article's PDF has been downloaded 273 times.