The # product in combinatorial Hopf algebrasConference paper
Authors: Jean-Christophe Aval ; Jean-Christophe Novelli ; Jean-Yves Thibon
NULL##NULL##NULL
Jean-Christophe Aval;Jean-Christophe Novelli;Jean-Yves Thibon
[en]
We show that the # product of binary trees introduced by Aval and Viennot (2008) is in fact defined at the level of the free associative algebra, and can be extended to most of the classical combinatorial Hopf algebras.
[fr]
Nous montrons que le produit # introduit par Aval et Viennot (2008) est défini au niveau de l'algèbre associative libre, et peut être étendu à la plupart des algèbres de Hopf combinatoires classiques.
Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] combinatorial Hopf algebras, # product, binary trees, permutations, Young tableaux