Cristina Ballantine - Powers of the Vandermonde determinant, Schur functions, and the dimension game

dmtcs:2893 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2893
Powers of the Vandermonde determinant, Schur functions, and the dimension gameConference paper

Authors: Cristina Ballantine 1

  • 1 Department of Mathematics and Computer Science

[en]
Since every even power of the Vandermonde determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, I will give a recursive approach for computing the coefficient of the Schur function $s_μ$ in the decomposition of an even power of the Vandermonde determinant in $n+1$ variables in terms of the coefficient of the Schur function $s_λ$ in the decomposition of the same even power of the Vandermonde determinant in $n$ variables if the Young diagram of $μ$ is obtained from the Young diagram of $λ$ by adding a tetris type shape to the top or to the left.

[fr]
Comme toute puissance paire du déterminant de Vandermonde est un polynôme symétrique, nous voulons comprendre sa décomposition dans la base des fonctions de Schur. Nous allons étudier plusieurs propriétés combinatoires des coefficients de la décomposition. En particulier, nous allons donner une approche récursive pour le calcul du coefficient de la fonction de Schur $s_μ$ dans la décomposition d'une puissance paire du déterminant de Vandermonde en $n+1$ variables, en fonction du coefficient de la fonction de Schur $s_λ$ dans la décomposition de la même puissance paire du déterminant de Vandermonde en $n$ variables, lorsque le diagramme de Young de $μ$ est obtenu à partir du diagramme de Young de $λ$ par l'addition d'une forme de type tetris vers le haut ou vers la gauche.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Schur functions, Vandermonde determinant, Young diagrams, symmetric functions, quantum Hall effect

2 Documents citing this article

Consultation statistics

This page has been seen 550 times.
This article's PDF has been downloaded 866 times.