Nicholas R. Beaton ; Filippo Disanto ; Anthony J. Guttmann ; Simone Rinaldi - On the enumeration of column-convex permutominoes

dmtcs:2895 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2895
On the enumeration of column-convex permutominoesConference paper

Authors: Nicholas R. Beaton 1; Filippo Disanto 2; Anthony J. Guttmann ORCID1; Simone Rinaldi ORCID2

  • 1 Department of Mathematics and Statistics [Melbourne]
  • 2 Department of Mathematics and Computer Science / Dipartimento di Scienze Matematiche e Informatiche "Roberto Magari"

[en]
We study the enumeration of \emphcolumn-convex permutominoes, i.e. column-convex polyominoes defined by a pair of permutations. We provide a direct recursive construction for the column-convex permutominoes of a given size, based on the application of the ECO method and generating trees, which leads to a functional equation. Then we obtain some upper and lower bounds for the number of column-convex permutominoes, and conjecture its asymptotic behavior using numerical analysis.

[fr]
Nous étudions l'énumeration des \emphpermutominos verticalement convexes, c.à.d. les polyominos verticalement convexes définis par un couple de permutations. Nous donnons une construction recursive directe pour ces permutominos de taille fixée, basée sur une application de la méthode ECO et les arbres de génération, qui nous amène à une équat ion fonctionelle. Ensuite nous obtenons des bornes superieures et inférieures pour le nombre de ces permutominos convexes et nous conjecturons leur comportement asymptotique à l'aide d'analyses numériques.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] polyominoes, permutations, generating functions

1 Document citing this article

Consultation statistics

This page has been seen 396 times.
This article's PDF has been downloaded 350 times.