Sara Billey ; Andrew Crites - Rational smoothness and affine Schubert varieties of type A

dmtcs:2900 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2900
Rational smoothness and affine Schubert varieties of type A

Authors: Sara Billey ; Andrew Crites

    The study of Schubert varieties in G/B has led to numerous advances in algebraic combinatorics and algebraic geometry. These varieties are indexed by elements of the corresponding Weyl group, an affine Weyl group, or one of their parabolic quotients. Often times, the goal is to determine which of the algebraic and topological properties of the Schubert variety can be described in terms of the combinatorics of its corresponding Weyl group element. A celebrated example of this occurs when G/B is of type A, due to Lakshmibai and Sandhya. They showed that the smooth Schubert varieties are precisely those indexed by permutations that avoid the patterns 3412 and 4231. Our main result is a characterization of the rationally smooth Schubert varieties corresponding to affine permutations in terms of the patterns 4231 and 3412 and the twisted spiral permutations.


    Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
    Section: Proceedings
    Published on: January 1, 2011
    Imported on: January 31, 2017
    Keywords: pattern avoidance,affine permutations,Schubert varieties,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
    Fundings :
      Source : OpenAIRE Research Graph
    • Computational/Combinatorial Considerations In Topology, Coxeter Groups, and Representation Theory; Funder: National Science Foundation; Code: 0800978

    Share

    Consultation statistics

    This page has been seen 217 times.
    This article's PDF has been downloaded 255 times.