Florian Block - Relative Node Polynomials for Plane Curves

dmtcs:2903 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2903
Relative Node Polynomials for Plane CurvesConference paper

Authors: Florian Block 1

  • 1 Department of Mathematics - University of Michigan

[en]
We generalize the recent work of Fomin and Mikhalkin on polynomial formulas for Severi degrees. The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d, provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves which, in addition, satisfy tangency conditions of given orders with respect to a given line. We show that the degrees of these varieties, appropriately rescaled, are given by a combinatorially defined ``relative node polynomial'' in the tangency orders, provided the latter are large enough. We describe a method to compute these polynomials for arbitrary δ , and use it to present explicit formulas for δ ≤ 6. We also give a threshold for polynomiality, and compute the first few leading terms for any δ .

[fr]
Nous généralisons les travaux récents de Fomin et Mikhalkin sur des formules polynomiales pour les degrés de Severi. Le degré de la variété de Severi des courbes planes de degré d et à δ nœuds est donné par un polynôme en d , pour δ fixé et d assez grand. Nous étendons ce résultat aux variétés de Severi généralisées paramétrant les courbes planes et qui, en outre, satisfont à des conditions de tangence d'ordres donnés avec une droite fixée. Nous montrons que les degrés de ces variétés, rééchelonnés de manière appropriée, sont donnés par un ``polynôme de noeud relatif'', défini combinatoirement, en les ordres de tangence, dès que ceux-ci sont assez grands. Nous décrivons une méthode pour calculer ces polynômes pour delta arbitraire, et l'utilisons pour présenter des formules explicites pour δ ≤ 6 . Nous donnons aussi un seuil pour la polynomialité, et calculons les premiers termes dominants pour tout δ .


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] enumerative geometry, floor diagram, Gromov-Witten theory, node polynomial, tangency conditions

1 Document citing this article

Consultation statistics

This page has been seen 339 times.
This article's PDF has been downloaded 271 times.