Clemens Bruschek ; Hussein Mourtada ; Jan Schepers - Arc Spaces and Rogers-Ramanujan Identities

dmtcs:2904 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2904
Arc Spaces and Rogers-Ramanujan IdentitiesConference paper

Authors: Clemens Bruschek 1,2; Hussein Mourtada ORCID3; Jan Schepers 4,5

[en]
Arc spaces have been introduced in algebraic geometry as a tool to study singularities but they show strong connections with combinatorics as well. Exploiting these relations we obtain a new approach to the classical Rogers-Ramanujan Identities. The linking object is the Hilbert-Poincaré series of the arc space over a point of the base variety. In the case of the double point this is precisely the generating series for the integer partitions without equal or consecutive parts.

[fr]
Les espaces des arcs ont été introduit pour étudier les singularités, mais ils ont aussi un lien fort avec la combinatoire. Ce lien permet une nouvelle approche vers les identités de Rogers-Ramanujan. L'objet permettant cette approche est la série de Hilbert-Poincaré de l'algèbre des arcs centrés en un point de la variété de base. Dans le cas où cette variété est le point double, cette série est la série génératrice des partitions d'un nombre entier sans parties égales ou consécutives.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] formal power series, Hilbert-Poincaré series, partitions, Rogers-Ramanujan Identities, arc spaces, infinite dimensional Gröbner basis
Funding:
    Source : OpenAIRE Graph
  • Solving Algebraic Equations II; Code: P 21461
  • Approximation Theorems in Algebra and CR Geometry; Code: I 382

4 Documents citing this article

Consultation statistics

This page has been seen 403 times.
This article's PDF has been downloaded 594 times.