Jeffrey Ferreira - A Littlewood-Richardson type rule for row-strict quasisymmetric Schur functions

dmtcs:2914 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2914
A Littlewood-Richardson type rule for row-strict quasisymmetric Schur functionsConference paper

Authors: Jeffrey Ferreira 1

  • 1 Department of Mathematics [Univ California Davis]

[en]
We establish several properties of an algorithm defined by Mason and Remmel (2010) which inserts a positive integer into a row-strict composition tableau. These properties lead to a Littlewood-Richardson type rule for expanding the product of a row-strict quasisymmetric Schur function and a symmetric Schur function in terms of row-strict quasisymmetric Schur functions.

[fr]
Nous établissons plusieurs propriétés d'un algorithme défini par Mason et Remmel (2010), qui insère un entier positif dans un tableau dont la forme est une composition, avec ordre strict sur les lignes (row-strict). Ces propriétés conduisent à une règle de type Littlewood-Richardson pour étendre le produit d'une fonction de Schur quasi-symétrique "row-strict'' et d'une fonction de Schur symétrique en termes de fonctions de Schur quasi-symétriques "row-strict''.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Littlewood-Richardson rule, quasisymmetric function, Schur function
Funding:
    Source : OpenAIRE Graph
  • EMSW21-VIGRE: Focus on Mathematics; Funder: National Science Foundation; Code: 0636297

1 Document citing this article

Consultation statistics

This page has been seen 355 times.
This article's PDF has been downloaded 351 times.