The pentagram map and Y-patternsConference paper
Authors: Max Glick 1
NULL
Max Glick
- 1 Department of Mathematics - University of Michigan
[en]
The pentagram map, introduced by R. Schwartz, is defined by the following construction: given a polygon as input, draw all of its ``shortest'' diagonals, and output the smaller polygon which they cut out. We employ the machinery of cluster algebras to obtain explicit formulas for the iterates of the pentagram map.
[fr]
L'application pentagramme de R. Schwartz est définie par la construction suivante: on trace les diagonales ``les plus courtes'' d'un polygone donné en entrée et on retourne en sortie le plus petit polygone que ces diagonales découpent. Nous employons la machinerie des algèbres ``clusters'' pour obtenir des formules explicites pour les itérations de l'application pentagramme.
Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] pentagram map, cluster algebra, Y-pattern, alternating sign matrix
Funding:
Source : OpenAIRE Graph- EMSW21-RTG: Developing American Research Leadership in Algebraic Geometry and its Boundaries; Funder: National Science Foundation; Code: 0943832
- Algebraic Combinatorics; Funder: National Science Foundation; Code: 0555880