Andrew Goodall ; Criel Merino ; Anna de Mier ; Marc Noy - On the evaluation of the Tutte polynomial at the points (1,-1) and (2,-1)

dmtcs:2921 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2921
On the evaluation of the Tutte polynomial at the points (1,-1) and (2,-1)Conference paper

Authors: Andrew Goodall ORCID1; Criel Merino ORCID2; Anna de Mier ORCID3,4; Marc Noy 3,4

[en]
C. Merino [Electron. J. Combin. 15 (2008)] showed that the Tutte polynomial of a complete graph satisfies $t(K_{n+2};2,-1)=t(K_n;1,-1)$. We first give a bijective proof of this identity based on the relationship between the Tutte polynomial and the inversion polynomial for trees. Next we move to our main result, a sufficient condition for a graph G to have two vertices u and v such that $t(G;2,-1)=t(G-\{u,v\};1,-1)$; the condition is satisfied in particular by the class of threshold graphs. Finally, we give a formula for the evaluation of $t(K_{n,m};2,-1)$ involving up-down permutations.

[fr]
C. Merino [Electron. J. Combin. 15 (2008)] a montré que le polynôme de Tutte du graphe complet satisfait $t(K_{n+2};2,-1)=t(K_n;1,-1)$. Le rapport entre le polynôme de Tutte et le polynôme d'inversions d'un arbre nous permet de donner une preuve bijective de cette identité. Le résultat principal du travail est une condition suffisante pour qu'un graphe ait deux sommets u et v tels que $t(G;2,-1)=t(G-\{u,v\};1,-1)$; en particulier, les graphes ``threshold'' satisfont cette condition. Finalement, nous donnons une formule pour $t(K_{n,m};2,-1)$ qui fait intervenir les permutations alternées.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Tutte polynomial, increasing tree, threshold graph, generating function, up-down permutation

Consultation statistics

This page has been seen 412 times.
This article's PDF has been downloaded 563 times.