Alan Guo
-
Cyclic sieving phenomenon in non-crossing connected graphs
dmtcs:2923 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2011,
DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
-
https://doi.org/10.46298/dmtcs.2923Cyclic sieving phenomenon in non-crossing connected graphsConference paper
Authors: Alan Guo 1
NULL
Alan Guo
- 1 Department of Mathematics [Durham]
[en]
A non-crossing connected graph is a connected graph on vertices arranged in a circle such that its edges do not cross. The count for such graphs can be made naturally into a q-binomial generating function. We prove that this generating function exhibits the cyclic sieving phenomenon, as conjectured by S.-P. Eu.
[fr]
Un graphe connexe dont les sommets sont disposés sur un cercle est sans croisement si ses arêtes ne se croisent pas. Nous démontrons une conjecture de S.-P. Eu affirmant que la fonction génératrice q-binomiale dénombrant de tels graphes exhibe le phénomène du crible cyclique.
Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] cyclic sieving phenomenon, non-crossing connected graphs, Lagrange inversion
Funding:
Source : OpenAIRE Graph- Reflection Group Combinatorics; Funder: National Science Foundation; Code: 1001933