Christopher R. H. Hanusa ; Brant C. Jones - The enumeration of fully commutative affine permutations

dmtcs:2925 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2925
The enumeration of fully commutative affine permutationsArticle

Authors: Christopher R. H. Hanusa ORCID1; Brant C. Jones 2

  • 1 Department of Mathematics [New York CUNY]
  • 2 Department of Mathematics and Statistics

We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a summary of the results; the full version appears elsewhere.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: affine Coxeter group,abacus diagram,window notation,complete notation,fully commutative,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • EMSW21-VIGRE: Focus on Mathematics; Funder: National Science Foundation; Code: 0636297

2 Documents citing this article

Consultation statistics

This page has been seen 209 times.
This article's PDF has been downloaded 240 times.