Christopher R. H. Hanusa ; Brant C. Jones - The enumeration of fully commutative affine permutations

dmtcs:2925 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2925
The enumeration of fully commutative affine permutationsConference paper

Authors: Christopher R. H. Hanusa ORCID1; Brant C. Jones 2

  • 1 Department of Mathematics [New York CUNY]
  • 2 Department of Mathematics and Statistics

[en]
We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a summary of the results; the full version appears elsewhere.

[fr]
Nous présentons une fonction génératrice qui énumère les permutations affines totalement commutatives par leur rang et par leur longueur de Coxeter, généralisant les formules dues à Stembridge et à Barcucci–Del Lungo–Pergola–Pinzani. Pour un rang précis, les fonctions génératrices ont des coefficients qui sont périodiques de période divisant leur rang. Nous obtenons des résultats qui expliquent la structure des permutations affines totalement commutatives. L'article dessous est un aperçu des résultats; la version complète appara\^ıt ailleurs.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] affine Coxeter group, abacus diagram, window notation, complete notation, fully commutative
Funding:
    Source : OpenAIRE Graph
  • EMSW21-VIGRE: Focus on Mathematics; Funder: National Science Foundation; Code: 0636297

2 Documents citing this article

Consultation statistics

This page has been seen 327 times.
This article's PDF has been downloaded 356 times.