Christine E. Heitsch ; Prasad Tetali - Meander Graphs

dmtcs:2926 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2926
Meander GraphsConference paper

Authors: Christine E. Heitsch 1; Prasad Tetali 1

  • 1 School of Mathematics - Georgia Institute of Technology

[en]
We consider a Markov chain Monte Carlo approach to the uniform sampling of meanders. Combinatorially, a meander $M = [A:B]$ is formed by two noncrossing perfect matchings, above $A$ and below $B$ the same endpoints, which form a single closed loop. We prove that meanders are connected under appropriate pairs of balanced local moves, one operating on $A$ and the other on $B$. We also prove that the subset of meanders with a fixed $B$ is connected under a suitable local move operating on an appropriately defined meandric triple in $A$. We provide diameter bounds under such moves, tight up to a (worst case) factor of two. The mixing times of the Markov chains remain open.

[fr]
Nous considérons une approche de Monte Carlo par chaîne de Markov pour l'échantillonnage uniforme des méandres. Combinatoirement, un méandre $M = [A : B]$ est constitué par deux couplages (matchings) parfaits sans intersection $A$ et $B$, définis sur le même ensemble de points alignés, et qui forment une boucle fermée simple lorsqu'on dessine $A$ "vers le haut'' et $B$ "vers le bas''. Nous montrons que les méandres sont connectés sous l'action de paires appropriées de mouvements locaux équilibrés, l'un opérant sur $A$ et l'autre sur $B$. Nous montrons également que le sous-ensemble de méandres avec un $B$ fixe est connecté sous l'action de mouvements locaux définis sur des "triplets méandriques'' de $A$. Nous fournissons des bornes sur les diamètres pour de tels mouvements, exactes à un facteur 2 près (dans le pire des cas). Les temps de mélange des chaînes de Markov demeurent une question ouverte.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Markov chain Monte Carlo, combinatorial enumeration, noncrossing partitions, perfect matchings
Funding:
    Source : OpenAIRE Graph
  • Information Inequalities and Combinatorial Applications; Funder: National Science Foundation; Code: 0701043

2 Documents citing this article

Consultation statistics

This page has been seen 545 times.
This article's PDF has been downloaded 736 times.