0-Hecke algebra actions on coinvariants and flagsConference paperAuthors: Jia Huang
1
0000-0002-9439-0067
Jia Huang
[en]
By investigating the action of the 0-Hecke algebra on the coinvariant algebra and the complete flag variety, we interpret generating functions counting the permutations with fixed inverse descent set by their inversion number and major index.
[fr]
En étudiant l'action de l'algèbre de 0-Hecke sur l'algèbre coinvariante et la variété de drapeaux complète, nous interprétons les fonctions génératrices qui comptent les permutations avec un ensemble inverse de descentes fixé, selon leur nombre d'inversions et leur "major index''.
Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] 0-Hecke algebra, Ribbon number, Descent monomial, Demazure operator.
Funding:
Source : OpenAIRE Graph- Reflection Group Combinatorics; Funder: National Science Foundation; Code: 1001933