Matthieu Josuat-Vergès ; Jang-Soo Kim - Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity

dmtcs:2934 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2934
Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identityConference paper

Authors: Matthieu Josuat-Vergès ORCID1; Jang-Soo Kim 2

  • 1 Fakultät für Mathematik [Wien]
  • 2 School of Mathematics

[en]
We give a combinatorial proof of a Touchard-Riordan-like formula discovered by the first author. As a consequence we find a connection between his formula and Jacobi's triple product identity. We then give a combinatorial analog of Jacobi's triple product identity by showing that a finite sum can be interpreted as a generating function of weighted Schröder paths, so that the triple product identity is recovered by taking the limit. This can be stated in terms of some continued fractions called T-fractions, whose important property is the fact that they satisfy some functional equation. We show that this result permits to explain and generalize some Touchard-Riordan-like formulas appearing in enumerative problems.

[fr]
Nous donnons une preuve combinatoire d'une formule à la Touchard-Riordan due au premier auteur. En conséquence, nous faisons appara\^ıtre un lien entre cette formule et l'identité du produit triple de Jacobi. Nous donnons un analogue combinatoire à l'identité du produit triple en montrant qu'une somme finie peut être interprétée comme fonction génératrice de chemins de Schröder pondérés, de sorte que l'identité du produit triple s'obtient en passant à la limite. Ceci peut être énoncé en termes de fractions continues appelées T-fractions, dont la propriété importante est le fait qu'elle satisfont certaines équations fonctionnelles. Nous montrons que ce résultat permet d'expliquer et généraliser certaines formules à la Touchard-Riordan apparaissant dans des problèmes d'énumération.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Jacobi's triple product identity, continued fractions, enumeration
Funding:
    Source : OpenAIRE Graph
  • Compact enumeration formulas for generalized partitions; Code: Y 463

1 Document citing this article

Consultation statistics

This page has been seen 407 times.
This article's PDF has been downloaded 648 times.