Matjaž Konvalinka - Skew quantum Murnaghan-Nakayama rule

dmtcs:2936 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2936
Skew quantum Murnaghan-Nakayama ruleConference paper

Authors: Matjaž Konvalinka ORCID1,2

  • 1 Department of Mathematics
  • 2 Institute of Mathematics, Physics and Mechanics [Ljubljana]

[en]
In this extended abstract, we extend recent results of Assaf and McNamara, the skew Pieri rule and the skew Murnaghan-Nakayama rule, to a more general identity, which gives an elegant expansion of the product of a skew Schur function with a quantum power sum function in terms of skew Schur functions. We give two proofs, one completely bijective in the spirit of Assaf-McNamara's original proof, and one via Lam-Lauve-Sotille's skew Littlewood-Richardson rule.

[fr]
Dans cet article nous élargissons le cadre de résultats récents de Assaf et McNamara, la règle dissymétrique de Pieri et la règle dissymétrique de Murnaghan-Nakayama, pour obtenir une identité plus générale donnant un développement élégant du produit de la fonction de Schur dissymétrique par une somme de puissances quantiques, en termes de fonctions de Schur dissymétriques. Nous donnons deux démonstrations, la première suivant l'approche de Assaf-McNamara et la deuxième par le biais de la règle dissymétrique de Littlewood-Richardson obtenue par Lam-Lauve-Sotille.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Murnaghan-Nakayama rule, Pieri rule, skew tableaux, Schur functions, q-analogue

Consultation statistics

This page has been seen 342 times.
This article's PDF has been downloaded 321 times.