Joel Brewster Lewis ; Ricky Ini Liu ; Alejandro H. Morales ; Greta Panova ; Steven V Sam et al. - Matrices with restricted entries and q-analogues of permutations (extended abstract)

dmtcs:2941 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2941
Matrices with restricted entries and q-analogues of permutations (extended abstract)Conference paper

Authors: Joel Brewster Lewis 1; Ricky Ini Liu 2; Alejandro H. Morales 1; Greta Panova 3; Steven V Sam ORCID1; Yan Zhang ORCID1

  • 1 Department of Mathematics [MIT]
  • 2 School of Mathematics
  • 3 Department of Mathematics [Cambridge]

[en]
We study the functions that count matrices of given rank over a finite field with specified positions equal to zero. We show that these matrices are $q$-analogues of permutations with certain restricted values. We obtain a simple closed formula for the number of invertible matrices with zero diagonal, a $q$-analogue of derangements, and a curious relationship between invertible skew-symmetric matrices and invertible symmetric matrices with zero diagonal. In addition, we provide recursions to enumerate matrices and symmetric matrices with zero diagonal by rank. Finally, we provide a brief exposition of polynomiality results for enumeration questions related to those mentioned, and give several open questions.

[fr]
Nous étudions certaines fonctions qui comptent des matrices à coefficients dans un corps fini d'un rang donné ayant certaines entrées égales à zéro. Nous montrons que ces matrices sont des $q$-analogues des permutations avec certaines valeurs restreintes, et nous obtenons une formule simple et fermée pour calculer le nombre de matrices inversibles avec zéro sur toute la diagonale. De plus nous donnons des récursions pour énumérer par le rang les matrices et les matrices symétriques avec des zéros sur la diagonale. Pour finir, nous faisons un exposé concis des résultats sur la polynomialité des fonctions énumératives liées à celles qui sont mentionnées antérieurement, et nous incluons plusieurs questions ouvertes.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] linear algebra over finite fields, $q$-analogues, derangements

Consultation statistics

This page has been seen 556 times.
This article's PDF has been downloaded 738 times.