Pierre-Loïc Méliot - Kerov's central limit theorem for Schur-Weyl and Gelfand measures (extended abstract)

dmtcs:2943 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2943
Kerov's central limit theorem for Schur-Weyl and Gelfand measures (extended abstract)Conference paper

Authors: Pierre-Loïc Méliot 1

[en]
We show that the shapes of integer partitions chosen randomly according to Schur-Weyl measures of parameter $\alpha =1/2$ and Gelfand measures satisfy Kerov's central limit theorem. Thus, there is a gaussian process $\Delta$ such that under Plancherel, Schur-Weyl or Gelfand measures, the deviations $\Delta_n(s)=\lambda _n(\sqrt{n} s)-\sqrt{n} \lambda _{\infty}^{\ast}(s)$ converge in law towards $\Delta (s)$, up to a translation along the $x$-axis in the case of Schur-Weyl measures, and up to a factor $\sqrt{2}$ and a deterministic remainder in the case of Gelfand measures. The proofs of these results follow the one given by Ivanov and Olshanski for Plancherel measures; hence, one uses a "method of noncommutative moments''.

[fr]
Nous montrons que les formes des partitions d'entiers choisies aléatoirement sous les mesures de Schur-Weyl de paramètre $\alpha =1/2$ et sous les mesures de Gelfand obéissent au théorème central limite de Kerov. Ainsi, il existe un processus gaussien $\Delta$ tel que sous les mesures de Plancherel, de Schur-Weyl ou de Gelfand, les déviations $\Delta_n(s)=\lambda _n(\sqrt{n} s)-\sqrt{n} \lambda _{\infty}^{\ast}(s)$ convergent en loi vers $\Delta (s)$, à une translation près le long de l'axe des abscisses pour les mesures de Schur-Weyl, et à un facteur $\sqrt{2}$ et un reste déterministe près dans le cas des mesures de Gelfand. Les preuves de ces résultats suivent celle donnée par Ivanov et Olshanski pour les mesures de Plancherel; ainsi, on utilise une "méthode de moments non commutatifs''.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Random partitions, representation theory of symmetric groups.

1 Document citing this article

Consultation statistics

This page has been seen 415 times.
This article's PDF has been downloaded 522 times.