Pierre-Loïc Méliot
-
Kerov's central limit theorem for Schur-Weyl and Gelfand measures (extended abstract)
dmtcs:2943 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2011,
DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
-
https://doi.org/10.46298/dmtcs.2943
Kerov's central limit theorem for Schur-Weyl and Gelfand measures (extended abstract)Article
We show that the shapes of integer partitions chosen randomly according to Schur-Weyl measures of parameter $\alpha =1/2$ and Gelfand measures satisfy Kerov's central limit theorem. Thus, there is a gaussian process $\Delta$ such that under Plancherel, Schur-Weyl or Gelfand measures, the deviations $\Delta_n(s)=\lambda _n(\sqrt{n} s)-\sqrt{n} \lambda _{\infty}^{\ast}(s)$ converge in law towards $\Delta (s)$, up to a translation along the $x$-axis in the case of Schur-Weyl measures, and up to a factor $\sqrt{2}$ and a deterministic remainder in the case of Gelfand measures. The proofs of these results follow the one given by Ivanov and Olshanski for Plancherel measures; hence, one uses a "method of noncommutative moments''.
Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: Random partitions,representation theory of symmetric groups.,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]