Alejandro H. Morales ; Ekaterina A. Vassilieva - Bijective evaluation of the connection coefficients of the double coset algebra

dmtcs:2944 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2944
Bijective evaluation of the connection coefficients of the double coset algebraConference paper

Authors: Alejandro H. Morales 1; Ekaterina A. Vassilieva 2

[en]
This paper is devoted to the evaluation of the generating series of the connection coefficients of the double cosets of the hyperoctahedral group. Hanlon, Stanley, Stembridge (1992) showed that this series, indexed by a partition $ν$, gives the spectral distribution of some random matrices that are of interest in random matrix theory. We provide an explicit evaluation of this series when $ν =(n)$ in terms of monomial symmetric functions. Our development relies on an interpretation of the connection coefficients in terms of locally orientable hypermaps and a new bijective construction between partitioned locally orientable hypermaps and some permuted forests.

[fr]
Cet article est dédié à l'évaluation des séries génératrices des coefficients de connexion des classes doubles (cosets) du groupe hyperoctaédral. Hanlon, Stanley, Stembridge (1992) ont montré que ces séries indexées par une partition $ν$ donnent la distribution spectrale de certaines matrices aléatoires jouant un rôle important dans la théorie des matrices aléatoires. Nous fournissons une évaluation explicite de ces séries dans le cas $ν =(n)$ en termes de monômes symétriques. Notre développement est fondé sur une interprétation des coefficients de connexion en termes d'hypercartes localement orientables et sur une nouvelle bijection entre les hypercartes localement orientables partitionnées et certaines forêts permutées.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] double coset algebra, connection coefficients, locally orientable hypermaps, forests
Funding:
    Source : OpenAIRE Graph
  • Combinatorial methods, from enumerative topology to random discrete structures and compact data representations.; Funder: European Commission; Code: 208471

2 Documents citing this article

Consultation statistics

This page has been seen 419 times.
This article's PDF has been downloaded 445 times.