Kamilla Oliver ; Helmut Prodinger - How often do we reject a superior value? (Extended abstract)

dmtcs:2949 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2949
How often do we reject a superior value? (Extended abstract)Conference paper

Authors: Kamilla Oliver 1; Helmut Prodinger 2

  • 1 Department Mathematik [Erlangen]
  • 2 Department of Mathematical Sciences [Matieland, Stellenbosch Uni.]

[en]
Words $a_1 a_2 \ldots a_n$ with independent letters $a_k$ taken from the set of natural numbers, and a weight (probability) attached via the geometric distribution $pq^{i-1}(p+q=1)$ are considered. A consecutive record (motivated by the analysis of a skip list structure) can only advance from $k$ to $k+1$, thus ignoring perhaps some larger (=superior) values. We investigate the number of these rejected superior values. Further, we study the probability that there is a single consecutive maximum and show that (apart from fluctuations) it tends to a constant.

[fr]
On considère des mots $a_1a_2 \ldots a_n$ formés de lettres à valeurs entières, tirées de façon indépendante avec une distribution géométrique $pq^{i-1}(p+q=1)$. Un record $k+1$ est dit consécutif si la lettre précédente est $k$. La notion est motivée par des considérations algorithmiques. Les autres records sont rejetés. Nous étudions le nombre de records rejetés. Nous étudions aussi la probabilité qu'il y ait un seul maximum consécutif, et montrons qu'elle converge vers une constante, à certaines fluctuations près.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] combinatorics on words, records, generating functions, Rice's method, $q$-series

Consultation statistics

This page has been seen 320 times.
This article's PDF has been downloaded 429 times.