Adeline Pierrot ; Dominique Rossin ; Julian West
-
Adjacent transformations in permutations
dmtcs:2951 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2011,
DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
-
https://doi.org/10.46298/dmtcs.2951
Adjacent transformations in permutationsArticle
Authors: Adeline Pierrot 1; Dominique Rossin 2; Julian West 3
NULL##NULL##NULL
Adeline Pierrot;Dominique Rossin;Julian West
1 Laboratoire d'informatique Algorithmique : Fondements et Applications
We continue a study of the equivalence class induced on $S_n$ when one is permitted to replace a consecutive set of elements in a permutation with the same elements in a different order. For each possible set of allowed replacements, we characterise and/or enumerate the set of permutations reachable from the identity. In some cases we also count the number of equivalence classes.
Jean-Christophe Novelli;Jean-Yves Thibon;Frédéric Toumazet, 2020, A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions, arXiv (Cornell University), 24, 3, pp. 557-576, 10.1007/s00026-020-00504-5, https://arxiv.org/abs/1804.01762.