Adeline Pierrot ; Dominique Rossin ; Julian West - Adjacent transformations in permutations

dmtcs:2951 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2951
Adjacent transformations in permutationsConference paper

Authors: Adeline Pierrot 1; Dominique Rossin 2; Julian West 3

[en]
We continue a study of the equivalence class induced on $S_n$ when one is permitted to replace a consecutive set of elements in a permutation with the same elements in a different order. For each possible set of allowed replacements, we characterise and/or enumerate the set of permutations reachable from the identity. In some cases we also count the number of equivalence classes.

[fr]
Nous étudions dans cet article les classes d'équivalence sur les permutations obtenues en remplaçant un ensemble consécutif de valeurs par ces même valeurs mais dans un ordre différent. Nous étudions l'ensemble des remplacements possibles de longueur 3 et pour chacun d'entre eux caractérisons et énumérons les permutations de la classe de l'identité. Pour certains ensembles, nous calculons de même le nombre de classes d'équivalence.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] permutation patterns, equivalence classes, integer sequences, Catalan numbers, sorting permutations

1 Document citing this article

Consultation statistics

This page has been seen 523 times.
This article's PDF has been downloaded 1197 times.