Svetlana Poznanović - Cyclic sieving for two families of non-crossing graphs

dmtcs:2953 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2953
Cyclic sieving for two families of non-crossing graphsConference paper

Authors: Svetlana Poznanović 1

  • 1 School of Mathematics - Georgia Institute of Technology

[en]
We prove the cyclic sieving phenomenon for non-crossing forests and non-crossing graphs. More precisely, the cyclic group acts on these graphs naturally by rotation and we show that the orbit structure of this action is encoded by certain polynomials. Our results confirm two conjectures of Alan Guo.

[fr]
Nous prouvons le phénomène de crible cyclique pour les forêts et les graphes sans croisement. Plus précisément, le groupe cyclique agit sur ces graphes naturellement par rotation et nous montrons que la structure d'orbite de cette action est codée par certains polynômes. Nos résultats confirment deux conjectures de Alan Guo.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] cyclic sieving, non-crossing forests, non-crossing graphs

Consultation statistics

This page has been seen 318 times.
This article's PDF has been downloaded 445 times.