Dan Romik - Local extrema in random permutations and the structure of longest alternating subsequences

dmtcs:2956 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2956
Local extrema in random permutations and the structure of longest alternating subsequencesConference paper

Authors: Dan Romik 1

  • 1 Department of Mathematics [Univ California Davis]

[en]
Let $\textbf{as}_n$ denote the length of a longest alternating subsequence in a uniformly random permutation of order $n$. Stanley studied the distribution of $\textbf{as}_n$ using algebraic methods, and showed in particular that $\mathbb{E}(\textbf{as}_n) = (4n+1)/6$ and $\textrm{Var}(\textbf{as}_n) = (32n-13)/180$. From Stanley's result it can be shown that after rescaling, $\textbf{as}_n$ converges in the limit to the Gaussian distribution. In this extended abstract we present a new approach to the study of $\textbf{as}_n$ by relating it to the sequence of local extrema of a random permutation, which is shown to form a "canonical'' longest alternating subsequence. Using this connection we reprove the abovementioned results in a more probabilistic and transparent way. We also study the distribution of the values of the local minima and maxima, and prove that in the limit the joint distribution of successive minimum-maximum pairs converges to the two-dimensional distribution whose density function is given by $f(s,t) = 3(1-s)t e^{t-s}$.

[fr]
Pour une permutation aléatoire d'ordre $n$, on désigne par $\textbf{as}_n$ la longueur maximale d'une de ses sous-suites alternantes. Stanley a étudié la distribution de $\textbf{as}_n$ en utilisant des méthodes algébriques, et il a démontré en particulier que $\mathbb{E}(\textbf{as}_n) = (4n+1)/6$ et $\textrm{Var}(\textbf{as}_n) = (32n-13)/180$. A partir du résultat de Stanley on peut montrer qu'après changement d'échelle, $\textbf{as}_n$ converge vers la distribution normale. Nous présentons ici une approche nouvelle pour l'étude de $\textbf{as}_n$, en la reliant à la suite des extrema locaux d'une permutation aléatoire, dont nous montrons qu'elle constitue une sous-suite alternante maximale "canonique''. En utilisant cette relation, nous prouvons à nouveau les résultats mentionnés ci-dessus d'une façon plus probabiliste et transparente. En plus, nous prouvons un résultat asymptotique sur la distribution limite des paires formées d'un minimum et d'un maximum locaux consécutifs.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] longest alternating subsequences, permutation statistics, random permutation
Funding:
    Source : OpenAIRE Graph
  • CAREER: Combinatorial probability, limit shapes and enumeration; Funder: National Science Foundation; Code: 0955584

3 Documents citing this article

Consultation statistics

This page has been seen 523 times.
This article's PDF has been downloaded 554 times.