Anne Schilling ; Peter Tingley - Demazure crystals and the energy function

dmtcs:2959 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2959
Demazure crystals and the energy functionConference paper

Authors: Anne Schilling 1; Peter Tingley 2

  • 1 Department of Mathematics [Univ California Davis]
  • 2 Department of Mathematics [MIT]

[en]
There is a close connection between Demazure crystals and tensor products of Kirillov–Reshetikhin crystals. For example, certain Demazure crystals are isomorphic as classical crystals to tensor products of Kirillov–Reshetikhin crystals via a canonically chosen isomorphism. Here we show that this isomorphism intertwines the natural affine grading on Demazure crystals with a combinatorially defined energy function. As a consequence, we obtain a formula of the Demazure character in terms of the energy function, which has applications to nonsymmetric Macdonald polynomials and $q$-deformed Whittaker functions.

[fr]
Les cristaux de Demazure et les produits tensoriels de cristaux Kirillov–Reshetikhin sont étroitement liés. Par exemple, certains cristaux de Demazure sont isomorphes, en tant que cristaux classiques, à des produits tensoriels de cristaux Kirillov–Reshetikhin via un isomorphisme que l'on peut choisir canoniquement. Ici, nous montrons que cet isomorphisme entremêle la graduation affine naturelle des cristaux de Demazure avec une fonction énergie définie combinatoirement. Comme conséquence, nous obtenons une formule pour le caractère de Demazure exprimée au moyen de la fonction énergie, avec des applications aux polynômes de Macdonald non symétriques et aux fonctions de Whittaker $q$-déformées.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Demazure crystals, affine crystals, nonsymmetric Macdonald polynomials, Whittaker functions
Funding:
    Source : OpenAIRE Graph
  • PostDoctoral Research Fellowship; Funder: National Science Foundation; Code: 0902649
  • Affine Combinatorics; Funder: National Science Foundation; Code: 1001256
  • FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652641
  • FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652652

Consultation statistics

This page has been seen 395 times.
This article's PDF has been downloaded 511 times.