Luis Serrano ; Christian Stump - Generalized triangulations, pipe dreams, and simplicial spheres

dmtcs:2961 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2961
Generalized triangulations, pipe dreams, and simplicial spheresConference paper

Authors: Luis Serrano ORCID1; Christian Stump 1

  • 1 Laboratoire de combinatoire et d'informatique mathématique [Montréal]

[en]
We exhibit a canonical connection between maximal $(0,1)$-fillings of a moon polyomino avoiding north-east chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable and thus a shellable sphere. In particular, this implies a positivity result for Schubert polynomials. For Ferrers shapes, we moreover construct a bijection to maximal fillings avoiding south-east chains of the same length which specializes to a bijection between $k$-triangulations of the $n$-gon and $k$-fans of Dyck paths. Using this, we translate a conjectured cyclic sieving phenomenon for $k$-triangulations with rotation to $k$-flagged tableaux with promotion.

[fr]
Nous décrivons un lien canonique entre les $(0,1)$-remplissages maximaux d'un polyomino-lune évitant les chaînes Nord-Est d'une longueur donnée, et les "pipe dreams'' réduits d'une certaine permutation. En suivant cette approche nous montrons que le complexe simplicial de tels remplissages maximaux est une sphère "vertex-decomposable'' et donc "shellable''. En particulier, cela entraîne un résultat de positivité sur les polynômes de Schubert. De plus, nous construisons, dans le cas des diagrammes de Ferrers, une bijection vers les remplissages maximaux évitant les chaînes Sud-Est de même longueur, qui se spécialise en une bijection entre les $k$-triangulations d'un $n$-gone et les $k$-faisceaux de chemins de Dyck. A l'aide de celle-ci, nous traduisons une instance conjecturale du phénomène de tamis cyclique pour les $k$-triangulations avec rotation dans le cadre des tableaux $k$-marqués avec promotion.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] $k$-triangulation, enumerative combinatorics, pipe dream, fans of Dyck paths, flagged Schur function, Schubert polynomial, Edelman-Greene insertion

2 Documents citing this article

Consultation statistics

This page has been seen 444 times.
This article's PDF has been downloaded 576 times.