Lenny Tevlin - Noncommutative Symmetric Hall-Littlewood Polynomials

dmtcs:2964 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) - https://doi.org/10.46298/dmtcs.2964
Noncommutative Symmetric Hall-Littlewood PolynomialsConference paper

Authors: Lenny Tevlin 1

[en]
Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will demonstrate introducing a new family of noncommutative symmetric functions, depending on one parameter. It seems to be an appropriate noncommutative analog of the Hall-Littlewood polynomials.

[fr]
Les fonctions symétriques non commutatives ont de nombreuses propriétés analogues à celles des fonctions symétriques classiques (commutatives). Par exemple, les fonctions de Schur en rubans (analogues de la base de Schur classique) admettent des développements à coefficients positifs dans la base des monômes non commutatifs. La plupart des propriétés classiques s'étendent au cas non commutatif, comme je le montrerai en introduisant une nouvelle famille de fonctions symétriques non commutatives, dépendant d'un paramètre. Cette famille semble être un analogue non commutatif approprié de la famille des polynômes de Hall-Littlewood.


Volume: DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] symmetric functions

Consultation statistics

This page has been seen 344 times.
This article's PDF has been downloaded 598 times.