Marcelo Aguiar ; Carlos André ; Carolina Benedetti ; Nantel Bergeron ; Zhi Chen et al.
-
Supercharacters, symmetric functions in noncommuting variables (extended abstract)
dmtcs:2967 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2011,
DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
-
https://doi.org/10.46298/dmtcs.2967
Supercharacters, symmetric functions in noncommuting variables (extended abstract)Article
Authors: Marcelo Aguiar 1; Carlos André 2; Carolina Benedetti 3; Nantel Bergeron 3; Zhi Chen 3; Persi Diaconis 4; Anders Hendrickson 5; Samuel Hsiao 6; I. Martin Isaacs 7; Andrea Jedwab 8; Kenneth Johnson 9; Gizem Karaali 10; Aaron Lauve 11; Tung Le 12; Stephen Lewis 13; Huilan Li 14; Kay Magaard 15; Eric Marberg 16; Jean-Christophe Novelli 17; Amy Pang 18; Franco Saliola 19; Lenny Tevlin 20; Jean-Yves Thibon 17; Nathaniel Thiem 21; Vidya Venkateswaran 22; C. Ryan Vinroot 23; Ning Yan 24; Mike Zabrocki 3
We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras.