Chris Kuhlman ; Henning Mortveit ; David Murrugarra ; Anil Kumar - Bifurcations in Boolean Networks

dmtcs:2975 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AP, Automata 2011 - 17th International Workshop on Cellular Automata and Discrete Complex Systems - https://doi.org/10.46298/dmtcs.2975
Bifurcations in Boolean Networks

Authors: Chris Kuhlman ; Henning Mortveit ; David Murrugarra ; Anil Kumar

    This paper characterizes the attractor structure of synchronous and asynchronous Boolean networks induced by bi-threshold functions. Bi-threshold functions are generalizations of standard threshold functions and have separate threshold values for the transitions $0 \rightarrow $1 (up-threshold) and $1 \rightarrow 0$ (down-threshold). We show that synchronous bi-threshold systems may, just like standard threshold systems, only have fixed points and 2-cycles as attractors. Asynchronous bi-threshold systems (fixed permutation update sequence), on the other hand, undergo a bifurcation. When the difference $\Delta$ of the down- and up-threshold is less than 2 they only have fixed points as limit sets. However, for $\Delta \geq 2$ they may have long periodic orbits. The limiting case of $\Delta = 2$ is identified using a potential function argument. Finally, we present a series of results on the dynamics of bi-threshold systems for families of graphs.


    Volume: DMTCS Proceedings vol. AP, Automata 2011 - 17th International Workshop on Cellular Automata and Discrete Complex Systems
    Section: Proceedings
    Published on: January 1, 2011
    Imported on: January 31, 2017
    Keywords: bifurcation,bi-threshold,threshold,Boolean networks,graph dynamical systems,synchronous,asynchronous,sequential dynamical systems,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS],[NLIN.NLIN-CG] Nonlinear Sciences [physics]/Cellular Automata and Lattice Gases [nlin.CG],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]
    Fundings :
      Source : OpenAIRE Research Graph
    • Synthetic Information Systems for Better Informing Public Health Policymakers; Funder: National Institutes of Health; Code: 5U01GM070694-13
    • SDCI NMI New: From Desktops to Clouds -- A Middleware for Next Generation Network Science; Funder: National Science Foundation; Code: 1032677
    • Collaborative Research: Modeling Interaction Between Individual Behavior, Social Networks And Public Policy To Support Public Health Epidemiology.; Funder: National Science Foundation; Code: 0729441
    • Collaborative Research: NECO: A Market-Driven Approach to Dynamic Spectrum Sharing; Funder: National Science Foundation; Code: 0831633
    • Tracking the West Antarctic Rift Flank; Funder: National Science Foundation; Code: 0003957
    • CAREER: Cross-layer optimization in Cognitive Radio Networks in the Physical interference model based on SINR constraints: Algorithmic Foundations; Funder: National Science Foundation; Code: 0845700
    • NetSE: Large: Collaborative Research: Contagion in large socio-communication networks; Funder: National Science Foundation; Code: 1011769
    • Collaborative Research: Coupled Models of Diffusion and Individual Behavior Over Extremely Large Social Networks; Funder: National Science Foundation; Code: 0904844
    • Collaborative Research: NeTS-NBD: An Integrated Approach to Computing Capacity and Developing Efficient Cross-Layer Protocols for Wireless Networks; Funder: National Science Foundation; Code: 0626964

    3 Documents citing this article

    Share

    Consultation statistics

    This page has been seen 189 times.
    This article's PDF has been downloaded 201 times.