Asymptotic distribution of entry times in a cellular automaton with annihilating particlesConference paperAuthors: Petr Kůrka
1; Enrico Formenti
2; Alberto Dennunzio
3,2
0000-0002-1417-041X##0000-0002-1007-7912##NULL
Petr Kůrka;Enrico Formenti;Alberto Dennunzio
- 1 Center for Theoretical Study [Prague]
- 2 Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe MC3
- 3 Dipartimento di Informatica Sistemistica e Comunicazione
This work considers a cellular automaton (CA) with two particles: a stationary particle $1$ and left-going one $\overline{1}$. When a $\overline{1}$ encounters a $1$, both particles annihilate. We derive asymptotic distribution of appearence of particles at a given site when the CA is initialized with the Bernoulli measure with the probabilities of both particles equal to $1/2$.
Volume: DMTCS Proceedings vol. AP, Automata 2011 - 17th International Workshop on Cellular Automata and Discrete Complex Systems
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS], [NLIN.NLIN-CG]Nonlinear Sciences [physics]/Cellular Automata and Lattice Gases [nlin.CG], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Cellular Automata, Particle Systems, Entry Times, Return Times
Funding:
Source : OpenAIRE Graph- Funder: French National Research Agency (ANR); Code: ANR-09-BLAN-0164