Adrien Richard - A fixed point theorem for Boolean networks expressed in terms of forbidden subnetworks

dmtcs:2978 - Discrete Mathematics & Theoretical Computer Science, January 1, 2011, DMTCS Proceedings vol. AP, Automata 2011 - 17th International Workshop on Cellular Automata and Discrete Complex Systems - https://doi.org/10.46298/dmtcs.2978
A fixed point theorem for Boolean networks expressed in terms of forbidden subnetworksArticle

Authors: Adrien Richard 1

  • 1 Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe BIOINFO

We are interested in fixed points in Boolean networks, $\textit{i.e.}$ functions $f$ from $\{0,1\}^n$ to itself. We define the subnetworks of $f$ as the restrictions of $f$ to the hypercubes contained in $\{0,1\}^n$, and we exhibit a class $\mathcal{F}$ of Boolean networks, called even or odd self-dual networks, satisfying the following property: if a network $f$ has no subnetwork in $\mathcal{F}$, then it has a unique fixed point. We then discuss this "forbidden subnetworks theorem''. We show that it generalizes the following fixed point theorem of Shih and Dong: if, for every $x$ in $\{0,1\}^n$, there is no directed cycle in the directed graph whose the adjacency matrix is the discrete Jacobian matrix of $f$ evaluated at point $x$, then $f$ has a unique fixed point. We also show that $\mathcal{F}$ contains the class $\mathcal{F'}$ of networks whose the interaction graph is a directed cycle, but that the absence of subnetwork in $\mathcal{F'}$ does not imply the existence and the uniqueness of a fixed point.


Volume: DMTCS Proceedings vol. AP, Automata 2011 - 17th International Workshop on Cellular Automata and Discrete Complex Systems
Section: Proceedings
Published on: January 1, 2011
Imported on: January 31, 2017
Keywords: feedback circuit,Boolean network,fixed point,self-dual Boolean function,discrete Jacobian matrix,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS],[NLIN.NLIN-CG] Nonlinear Sciences [physics]/Cellular Automata and Lattice Gases [nlin.CG],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

1 Document citing this article

Consultation statistics

This page has been seen 276 times.
This article's PDF has been downloaded 220 times.