Guy Fayolle ; Kilian Raschel
-
Some exact asymptotics in the counting of walks in the quarter plane
dmtcs:2988 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2012,
DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12)
-
https://doi.org/10.46298/dmtcs.2988
Some exact asymptotics in the counting of walks in the quarter planeArticle
Authors: Guy Fayolle 1; Kilian Raschel 2,3
NULL##NULL
Guy Fayolle;Kilian Raschel
1 Informatique, Mathématiques et Automatique pour la Route Automatisée
2 Laboratoire de Mathématiques et Physique Théorique
3 Fédération de recherche Denis Poisson
Enumeration of planar lattice walks is a classical topic in combinatorics, at the cross-roads of several domains (e.g., probability, statistical physics, computer science). The aim of this paper is to propose a new approach to obtain some exact asymptotics for walks confined to the quarter plane.
Volume: DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: Random walk in the quarter plane,generating function,singularity analysis,boundary value problem.,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]
Stephen Melczer, Texts & monographs in symbolic computation/Texts and monographs in symbolic computation, Lattice Path Enumeration, The Kernel Method, and Diagonals, pp. 143-181, 2020, 10.1007/978-3-030-67080-1_4.