The Ram–Yip formula for Macdonald polynomials (at t=0) provides a statistic which we call charge. In types ${A}$ and ${C}$ it can be defined on tensor products of Kashiwara–Nakashima single column crystals. In this paper we show that the charge is equal to the (negative of the) energy function on affine crystals. The algorithm for computing charge is much simpler than the recursive definition of energy in terms of the combinatorial ${R}$-matrix.

Source : oai:HAL:hal-01283150v1

Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)

Section: Proceedings

Published on: January 1, 2012

Submitted on: January 31, 2017

Keywords: affine crystals, energy function, charge, Kashiwara-Nakashima tableaux, Macdonald polynomials,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 65 times.

This article's PDF has been downloaded 301 times.