Crystal energy via chargeConference paper
Authors: Cristian Lenart 1; Anne Schilling 2
NULL##NULL
Cristian Lenart;Anne Schilling
- 1 Department of Mathematics and Statistics [Albany-USA]
- 2 Department of Mathematics [Univ California Davis]
[en]
The Ram–Yip formula for Macdonald polynomials (at t=0) provides a statistic which we call charge. In types ${A}$ and ${C}$ it can be defined on tensor products of Kashiwara–Nakashima single column crystals. In this paper we show that the charge is equal to the (negative of the) energy function on affine crystals. The algorithm for computing charge is much simpler than the recursive definition of energy in terms of the combinatorial ${R}$-matrix.
[fr]
La formule de Ram et Yip pour les polynômes de Macdonald (à t = 0) fournit une statistique que nous appelons la charge. Dans les types ${A}$ et ${C}$, elle peut être définie sur les produits tensoriels des cristaux pour les colonnes de Kashiwara–Nakashima. Dans ce papier, nous montrons que la charge est égale à (l'opposé de) la fonction d'énergie sur cristaux affines. L'algorithme pour calculer la charge est bien plus simple que la définition récursive de l'énergie en fonction de la ${R}$-matrice combinatoire.
Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] affine crystals, energy function, charge, Kashiwara-Nakashima tableaux, Macdonald polynomials
Funding:
Source : OpenAIRE Graph- FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652652
- Affine Combinatorics; Funder: National Science Foundation; Code: 1001256
- Combinatorics of Crystals, Macdonald Polynomials, and Schubert Calculus; Funder: National Science Foundation; Code: 1101264
- FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652641