Joel Lewis Brewster ; Yan X Zhang
-
Enumeration of Graded (3 + 1)-Avoiding Posets
dmtcs:3019 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2012,
DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
-
https://doi.org/10.46298/dmtcs.3019Enumeration of Graded (3 + 1)-Avoiding PosetsConference paper
Authors: Joel Lewis Brewster 1; Yan X Zhang 1
NULL##NULL
Joel Lewis Brewster;Yan X Zhang
[en]
The notion of (3+1)-avoidance appears in many places in enumerative combinatorics, but the natural goal of enumerating all (3+1)-avoiding posets remains open. In this paper, we enumerate \emphgraded (3+1)-avoiding posets. Our proof consists of a number of structural theorems followed by some generating function magic.
[fr]
L'idèe de l'évitement de (3+1) apparaît dans beaucoup d'endroits dans le combinatoire ènumèrative, mais l'objectif naturel de le dènombrement des tous les ordres qui èvitent (3+1) demure ouvert. Dans cet article, nous ènumèrons les ordres étagès qui èvitent (3 + 1). Notre preuve est constituè de quelques thèorèmes de structure, et après un peu de la magie des fonctions gènèratrices.
Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] posets, (3 + 1)-avoiding, generating functions
Funding:
Source : OpenAIRE Graph- RTG in Combinatorics; Funder: National Science Foundation; Code: 1148634