Diego Cifuentes - On the degree-chromatic polynomial of a tree

dmtcs:3020 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3020
On the degree-chromatic polynomial of a treeConference paper

Authors: Diego Cifuentes 1

  • 1 Departamento de Matematicas [Univ de los Andes Colombia]

[en]
The degree chromatic polynomial $P_m(G,k)$ of a graph $G$ counts the number of $k$ -colorings in which no vertex has m adjacent vertices of its same color. We prove Humpert and Martin's conjecture on the leading terms of the degree chromatic polynomial of a tree.

[fr]
Le polynôme degré chromatique $P_m(G,k)$ d'un graphe $G$ compte le nombre de $k$-colorations dans lesquelles aucun sommet n'a m sommets adjacents de sa même couleur. On démontre la conjecture de Humpert et Martin sur les coefficients principaux du polynôme degré chromatique d'un arbre.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] chromatic polynomial, graph coloring, tree

Consultation statistics

This page has been seen 468 times.
This article's PDF has been downloaded 557 times.