Paul-Olivier Dehaye - Integrality of hook ratios

dmtcs:3022 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3022
Integrality of hook ratiosConference paper

Authors: Paul-Olivier Dehaye ORCID1

  • 1 Department of Mathematics - ETH

[en]
We study integral ratios of hook products of quotient partitions. This question is motivated by an analogous question in number theory concerning integral factorial ratios. We prove an analogue of a theorem of Landau that already applied in the factorial case. Under the additional condition that the ratio has one more factor on the denominator than the numerator, we provide a complete classification. Ultimately this relies on Kneser's theorem in additive combinatorics.

[fr]
Nous étudions les fractions de produits d'équerres de partitions quotients. Cette question fait écho à une question en théorie des nombres sur les quotients entiers de factorielles. Nous prouvons un analogue du théorème de Landau, qui aidait déjà dans le cas des factorielles. Sous l'hypothèse supplémentaire d'une fraction avec un facteur de plus au dénominateur qu'au numérateur, nous obtenons une classification complète. Cette partie de la preuve repose sur un théorème de Kneser en combinatoire additive.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] partitions, hook products, Kneser's theorem, McKay numbers, Beurling-Nyman criterion

Consultation statistics

This page has been seen 386 times.
This article's PDF has been downloaded 535 times.