A $d$-polytope $P$ is neighborly if every subset of $\lfloor\frac{d}{2}\rfloor $vertices is a face of $P$. In 1982, Shemer introduced a sewing construction that allows to add a vertex to a neighborly polytope in such a way as to obtain a new neighborly polytope. With this, he constructed superexponentially many different neighborly polytopes. The concept of neighborliness extends naturally to oriented matroids. Duals of neighborly oriented matroids also have a nice characterization: balanced oriented matroids. In this paper, we generalize Shemer's sewing construction to oriented matroids, providing a simpler proof. Moreover we provide a new technique that allows to construct balanced oriented matroids. In the dual setting, it constructs a neighborly oriented matroid whose contraction at a particular vertex is a prescribed neighborly oriented matroid. We compare the families of polytopes that can be constructed with both methods, and show that the new construction allows to construct many new polytopes.

Source : oai:HAL:hal-01283144v1

Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)

Section: Proceedings

Published on: January 1, 2012

Submitted on: January 31, 2017

Keywords: polytope, oriented matroid, neighborly, Gale dual, sewing construction.,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 53 times.

This article's PDF has been downloaded 102 times.