Sergi Elizalde ; Marc Noy - Consecutive patterns in permutations: clusters and generating functions

dmtcs:3036 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3036
Consecutive patterns in permutations: clusters and generating functionsConference paper

Authors: Sergi Elizalde ORCID1; Marc Noy 2

  • 1 Department of Mathematics [Dartmouth]
  • 2 Departament de Matemàtica Aplicada II

[en]
We use the cluster method in order to enumerate permutations avoiding consecutive patterns. We reprove and generalize in a unified way several known results and obtain new ones, including some patterns of length 4 and 5, as well as some infinite families of patterns of a given shape. Our main tool is the cluster method of Goulden and Jackson. We also prove some that, for a large class of patterns, the inverse of the exponential generating function counting occurrences is an entire function, but we conjecture that it is not D-finite in general.

[fr]
On utilise la mèthode des clusters pour ènumèrer permutations qui èvitent motifs consècutifs. On redèmontre et on gènèralise d'une manière unifièe plusieurs rèsultats et on obtient de nouveaux rèsultats pour certains motifs de longueur 4 et 5, ainsi que pour certaines familles infinies de motifs. L'outil principal c'est la mèthode des clusters de Goulden et Jackson. On dèmontre aussi que, pour une grande classe de motifs, l'inverse de la sèrie gènèratrice exponentielle qui compte occurrences est une fonction entière, mais on conjecture qu'elle n'est pas D-finie en gènèral.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Pattern avoidance, Consecutive patterns, Cluster method.

Consultation statistics

This page has been seen 444 times.
This article's PDF has been downloaded 807 times.