Andrew Berget ; Alex Fink - Invariants of vector configurations

dmtcs:3039 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3039
Invariants of vector configurationsConference paper

Authors: Andrew Berget 1; Alex Fink 2

[en]
We investigate the Zariski closure of the projective equivalence class of a matrix. New results are presented regarding the matrices in this variety and their matroids, and we give equations for the variety. We also discuss the K-polynomial of the closure of a projective equivalence class, and two other geometric invariants that can be obtained from this.

[fr]
Nous enquêtons sur l'adhèrence Zariski de la classe d'équivalence projective d'une matrice. Des rèsultats nouveaux sont prèsentès sur les matrices dans cette variètè et leur matroï des, et nous donnons èquations pour la variètè. Nous discutons ègalement le K-polynôme de l'adhèrence de la classe d'èquivalence projective, et deux autres invariants gèomètriques qui peuvent être obtenus à partir de cela.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] projective equivalence, matroids, orbit closure
Funding:
    Source : OpenAIRE Graph
  • EMSW21-VIGRE: Focus on Mathematics; Funder: National Science Foundation; Code: 0636297

Consultation statistics

This page has been seen 525 times.
This article's PDF has been downloaded 645 times.