Max Glick - On singularity confinement for the pentagram map

dmtcs:3049 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3049
On singularity confinement for the pentagram mapConference paper

Authors: Max Glick 1

  • 1 Department of Mathematics - University of Michigan

[en]
The pentagram map, introduced by R. Schwartz, is a birational map on the configuration space of polygons in the projective plane. We study the singularities of the iterates of the pentagram map. We show that a ``typical'' singularity disappears after a finite number of iterations, a confinement phenomenon first discovered by Schwartz. We provide a method to bypass such a singular patch by directly constructing the first subsequent iterate that is well-defined on the singular locus under consideration. The key ingredient of this construction is the notion of a decorated (twisted) polygon, and the extension of the pentagram map to the corresponding decorated configuration space.

[fr]
L'application pentagramme de R. Schwartz est une application birationnelle sur l'espace des polygones dans le plan projectif. Nous ètudions les singularitès des itèrations de l'application pentagramme. Nous montrons qu'une singularitè ``typique'' disparaî t après un nombre fini d'itèrations, un phènomène dècouvert par Schwartz. Nous fournissons une mèthode pour contourner une telle singularitè en construisant la première itèration qui est bien dèfinie. L'ingrèdient principal de cette construction est la notion d'un polygone dècorè et l'extension de l'application pentagramme á l'espace de configuration dècorè.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] pentagram map, singularity confinement, decorated polygon
Funding:
    Source : OpenAIRE Graph
  • EMSW21-RTG: Developing American Research Leadership in Algebraic Geometry and its Boundaries; Funder: National Science Foundation; Code: 0943832
  • Algebraic Combinatorics; Funder: National Science Foundation; Code: 1101152

Consultation statistics

This page has been seen 313 times.
This article's PDF has been downloaded 312 times.