Barbara Baumeister ; Christian Haase ; Benjamin Nill ; Andreas Paffenholz - Permutation Polytopes of Cyclic Groups

dmtcs:3051 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3051
Permutation Polytopes of Cyclic GroupsConference paper

Authors: Barbara Baumeister 1,2; Christian Haase 3,4; Benjamin Nill 5; Andreas Paffenholz ORCID6

[en]
We investigate the combinatorics and geometry of permutation polytopes associated to cyclic permutation groups, i.e., the convex hulls of cyclic groups of permutation matrices. In the situation that the generator of the group consists of at most two orbits, we can give a complete combinatorial description of the associated permutation polytope. In the case of three orbits the facet structure is already quite complex. For a large class of examples we show that there exist exponentially many facets.

[fr]
Nous ètudions les propriètès combinatoires et gèomètriques des polytopes de permutations pour des groupes cycliques. C'est à dire, donnè un groupe cyclique de matrices de permutations, nous considèrons son enveloppe convexe. Si le gènèrateur du groupe possède un ou deux orbites il y a une dèscription simple du polytope. Par contre, le cas de trois (ou plus) orbites est beaucoup plus compliquè. Pour une classe ample d'examples nous construisons un nombre exponentiel de faces de co-dimension un.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] permutation groups, cyclic groups, convex polytopes, 0/1-polytopes, marginal polytopes
Funding:
    Source : OpenAIRE Graph
  • Lattice Polytopes with a View Toward Algebraic Geometry; Funder: National Science Foundation; Code: 1102424
  • Lattice Polytopes with a View Toward Algebraic Geometry; Funder: National Science Foundation; Code: 1203162

3 Documents citing this article

Consultation statistics

This page has been seen 349 times.
This article's PDF has been downloaded 1347 times.