Sami Assaf ; Persi Diaconis ; Kannan Soundararajan - Riffle shuffles with biased cuts

dmtcs:3053 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3053
Riffle shuffles with biased cutsConference paper

Authors: Sami Assaf 1; Persi Diaconis 2; Kannan Soundararajan 3

  • 1 Department of Mathematics [Los Angeles]
  • 2 Department of Statistics [Stanford]
  • 3 Department of Mathematics [Stanford]

[en]
The well-known Gilbert-Shannon-Reeds model for riffle shuffles assumes that the cards are initially cut `about in half' and then riffled together. We analyze a natural variant where the initial cut is biased. Extending results of Fulman (1998), we show a sharp cutoff in separation and L-infinity distances. This analysis is possible due to the close connection between shuffling and quasisymmetric functions along with some complex analysis of a generating function.

[fr]
Le modèle de Gilbert-Shannon-Reeds pour mélange de cartes suppose que les cartes sont d'abord coupées environ de moitié, puis intercalées ensemble. Nous analysons une variante naturelle, où la coupe initiale est biaisée. En proposant une une extension des résultats de Fulman (1998), nous montrons une forte coupure dans les distances de séparation et à l'infinité L. Cette analyse est possible grâce à l'étroite relation entre brassage et fonctions quasi-symétriques.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] biased cuts, quasisymmetric functions, card shuffling

1 Document citing this article

Consultation statistics

This page has been seen 453 times.
This article's PDF has been downloaded 759 times.