Adam Bohn - Chromatic roots as algebraic integers

dmtcs:3061 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3061
Chromatic roots as algebraic integersConference paper

Authors: Adam Bohn 1

  • 1 School of Mathematical Sciences [London]

[en]
A chromatic root is a zero of the chromatic polynomial of a graph. At a Newton Institute workshop on Combinatorics and Statistical Mechanics in 2008, two conjectures were proposed on the subject of which algebraic integers can be chromatic roots, known as the ``$α +n$ conjecture'' and the ``$nα$ conjecture''. These say, respectively, that given any algebraic integer α there is a natural number $n$ such that $α +n$ is a chromatic root, and that any positive integer multiple of a chromatic root is also a chromatic root. By computing the chromatic polynomials of two large families of graphs, we prove the $α +n$ conjecture for quadratic and cubic integers, and show that the set of chromatic roots satisfying the nα conjecture is dense in the complex plane.

[fr]
Une racine chromatique est un zéro du polynôme chromatique d'un graphe. A un atelier au Newton Institute sur la combinatoire et la mécanique statistique en 2008, deux conjectures ont été proposées dont le sujet des entiers algébriques peut être racines chromatiques, connus sous le nom ``la conjecture $α + n$'' et ``la conjecture $n α$ ''. Les conjectures veulent dire, respectivement, que pour chaque entier algébrique $α$ il y a un nombre entier naturel $n$, tel que $α + n$ est une racine chromatique, et que chaque multiple entier positif d'une racine chromatique est aussi une racine chromatique . En calculant les polynômes chromatiques de deux grandes familles de graphes, on prouve la conjecture $α + n$ pour les entiers quadratiques et cubiques, et montre que l'ensemble des racines chromatiques qui confirme la conjecture $nα$ est dense dans le plan complexe.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] chromatic polynomial, chromatic roots, algebraic integers

Consultation statistics

This page has been seen 388 times.
This article's PDF has been downloaded 6943 times.