dmtcs:3064 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2012,
DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
-
https://doi.org/10.46298/dmtcs.3064
Product of Stanley symmetric functionsArticle
Authors: Nan Li 1
0000-0002-8600-7179
Nan Li
1 Department of Mathematics [MIT]
We study the problem of expanding the product of two Stanley symmetric functions $F_w·F_u$ into Stanley symmetric functions in some natural way. Our approach is to consider a Stanley symmetric function as a stabilized Schubert polynomial $F_w=\lim _n→∞\mathfrak{S}_{1^n×w}$, and study the behavior of the expansion of $\mathfrak{S} _{1^n×w}·\mathfrak{S} _{1^n×u}$ into Schubert polynomials, as $n$ increases. We prove that this expansion stabilizes and thus we get a natural expansion for the product of two Stanley symmetric functions. In the case when one permutation is Grassmannian, we have a better understanding of this stability.