Anna Mier ; Marc Noy - Extremal Statistics on Non-Crossing Configurations

dmtcs:3069 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3069
Extremal Statistics on Non-Crossing ConfigurationsConference paper

Authors: Anna Mier 1; Marc Noy 1

  • 1 Departament de Matemàtica Aplicada II

[en]
We obtain several properties of extremal statistics in non-crossing configurations with n vertices. We prove that the maximum degree and the largest component are of logarithmic order, and the diameter is of order $\sqrt{n}$. The proofs are based on singularity analysis, an application of the first and second moment method and on the analysis of iterated functions.

[fr]
On obtient des propriétés de paramètres extrémales dans les configurations sans croisement avec n sommets. On démontre que le degré maximal et la composante plus large sont d'ordre logarithmique, et le diamètre est d'ordre $\sqrt{n}$. Les preuves utilisent l'analyse de singularités, une application de la méthode du premier et second moment, et l'analyse de fonctions itérées.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Non-crossing configuration, Extremal parameters, Maximum degree, Diameter.

Consultation statistics

This page has been seen 356 times.
This article's PDF has been downloaded 599 times.