Eric Nordenstam ; Benjamin Young - Correlations for the Novak process

dmtcs:3070 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3070
Correlations for the Novak processConference paper

Authors: Eric Nordenstam 1; Benjamin Young 2

  • 1 Fakultät für Mathematik [Wien]
  • 2 Department of Mathematics [Sweden]

[en]
We study random lozenge tilings of a certain shape in the plane called the Novak half-hexagon, and compute the correlation functions for this process. This model was introduced by Nordenstam and Young (2011) and has many intriguing similarities with a more well-studied model, domino tilings of the Aztec diamond. The most difficult step in the present paper is to compute the inverse of the matrix whose (i,j)-entry is the binomial coefficient $C(A, B_j-i)$ for indeterminate variables $A$ and $B_1, \dots , B_n.$

[fr]
Nous étudions des pavages aléatoires d'une region dans le plan par des losanges qui s'appelle le demi-hexagone de Novak et nous calculons les corrélations de ce processus. Ce modèle a été introduit par Nordenstam et Young (2011) et a plusieurs similarités des pavages aléatoires d'un diamant aztèque par des dominos. La partie la plus difficile de cet article est le calcul de l'inverse d'une matrice ou l’élément (i,j) est le coefficient binomial $C(B_j-i, A)$ pour des variables $A$ et $B_1, \dots , B_n$ indéterminés.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Tilings, non-intersecting lattice paths, Eynard-Mehta theorem, experimental mathematics and inverse matrices.
Funding:
    Source : OpenAIRE Graph
  • Klassische Kombinatorik und Anwendungen; Code: Z 130

1 Document citing this article

Consultation statistics

This page has been seen 348 times.
This article's PDF has been downloaded 318 times.