Discrete Mathematics & Theoretical Computer Science |

- 1 Fakultät für Mathematik [Wien]
- 2 Department of Mathematics [Sweden]

We study random lozenge tilings of a certain shape in the plane called the Novak half-hexagon, and compute the correlation functions for this process. This model was introduced by Nordenstam and Young (2011) and has many intriguing similarities with a more well-studied model, domino tilings of the Aztec diamond. The most difficult step in the present paper is to compute the inverse of the matrix whose (i,j)-entry is the binomial coefficient $C(A, B_j-i)$ for indeterminate variables $A$ and $B_1, \dots , B_n.$

Source: HAL:hal-01283097v1

Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)

Section: Proceedings

Published on: January 1, 2012

Imported on: January 31, 2017

Keywords: Eynard-Mehta theorem, experimental mathematics and inverse matrices.,Tilings, non-intersecting lattice paths,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Funding:

- Source : OpenAIRE Graph
*Klassische Kombinatorik und Anwendungen*; Funder: Austrian Science Fund (FWF); Code: Z 130

This page has been seen 200 times.

This article's PDF has been downloaded 194 times.