We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a quasi-polynomial that interpolates between the two. We provide a generalized Fortuin-Kasteleyn representation for representable arithmetic matroids, with applications to arithmetic colorings and flows. We give a new proof of the positivity of the coefficients of the arithmetic Tutte polynomial in the more general framework of pseudo-arithmetic matroids. In the case of a representable arithmetic matroid, we provide a geometric interpretation of the coefficients of the arithmetic Tutte polynomial.

Source : oai:HAL:hal-01283095v1

Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)

Section: Proceedings

Published on: January 1, 2012

Submitted on: January 31, 2017

Keywords: Potts model, Tutte polynomial, chromatic polynomial, matroids, arithmetic matroids, abelian groups.,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 73 times.

This article's PDF has been downloaded 235 times.