Jang Soo Kim ; Seunghyun Seo ; Heesung Shin
-
Minimal transitive factorizations of a permutation of type (p,q)
dmtcs:3073 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2012,
DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
-
https://doi.org/10.46298/dmtcs.3073Minimal transitive factorizations of a permutation of type (p,q)Conference paper
Authors: Jang Soo Kim 1; Seunghyun Seo 2; Heesung Shin 3
NULL##NULL##NULL
Jang Soo Kim;Seunghyun Seo;Heesung Shin
[en]
We give a combinatorial proof of Goulden and Jackson's formula for the number of minimal transitive factorizations of a permutation when the permutation has two cycles. We use the recent result of Goulden, Nica, and Oancea on the number of maximal chains of annular noncrossing partitions of type B.
[fr]
Nous donnons une preuve combinatoire de formule de Goulden et Jackson pour le nombre de factorisations transitives minimales d'une permutation lorsque la permutation a deux cycles. Nous utilisons le rèsultat rècent de Goulden, Nica, et Oancea sur le nombre de chaî nes maximales des partitions non-croisèes annulaires de type B.
Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] minimal transitive factorizations, annular noncrossing partitions, bijective proof